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Transition curves for the variance of the nearest neighbor spacing distribution for Poisson
to Gaussian orthogonal and unitary ensemble transitions
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Using an appropriate 232 random matrix ensemble, transition curves for the variance of the nearest
neighbor spacing distribution are constructed for the Poisson to Gaussian orthogonal and unitary ensemble
transitions in terms of an easily identifiable transition parameter.@S1063-651X~99!10209-5#

PACS number~s!: 05.45.Mt, 02.50.2r, 03.65.2w, 24.60.Ky
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The classical @Gaussian orthogonal~GOE!, unitary
~GUE!, and sympletic~GSE!# random matrix ensembles ar
classified by Dyson, and Wigner’s surmise gives the nea
neighbor spacing distribution~NNSD! P(S)dS for these en-
sembles with GOE exhibiting linear and GUE quadratic le
repulsion. In addition, these ensembles exhibit spectral ri
ity as given by the Dyson-MehtaD3 spectral statistic~see
@1,2# and references therein!. The other extreme to the GOE
GUE, and GSE spectra are the picket fence~or uniform! and
the Poisson spectra. The seminal paper by Bohigaset al. in
1984@3# on the analysis of level fluctuations of the quantu
Sinai billiard, whose classical counterpart is known to
completely chaotic, has established that the fluctuation p
erties of classical random matrix ensembles are generic
therefore applicable for local spectral statistics of all quan
systems~earliest numerical study of this type is due to M
Donald and Kaufman@4#!. In fact, as Berry states@5#, ‘‘If the
system is classically integrableD3 corresponds to that o
Poisson systems, if the system is classically chaotic and
no symmetryD3 corresponds to that of GUE and if the sy
tem is chaotic and has time reversal symmetryD3 corre-
sponds to that of GOE.’’ With these, the subject of quant
chaos is developed; see the reviews@6,7#.

The changes in the nature of level fluctuations as a s
metry is gradually broken, as two good symmetry subspa
are gradually admixed, as ordered~integrable! spectra gradu-
ally become chaotic, etc., are studied by using interpola
and/or partitioned random matrix ensembles@8–11#. In all
these situations, one can identify that the transition param
(L) and the measures for level fluctuations such as the v
ance of NNSD@s2(0) in the notation of@2##, number vari-
anceS2(r ), D3 statistic, etc., versusL give the transition
curves. The transition curves for many different types of r
dom matrix interpolations are considered in the literatu
see @8–11#. For example, the GOE-GUE transition curv
given in @8# is used to derive an upper bound on the amo
of time-reversal noninvariant part of nucleon-nucleon int
action@12#. More recently, the transition curve for 232 par-
titioned GOE given in@8,9# is tested by experiments wit
superconducting microwave billiards@13#.

Poisson to GOE and GUE transitions received the at
tion of a large number of research groups as they repre
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order to chaos transitions. There are several different form
las, given by Brody@14#, Berry and Robnik@15#, Hasegawa
et al. @16#, Izrailev @17#, Abul-Magd@18#, etc., for the NNSD
PP-GOE(S)dS interpolating Poisson and GOE and similar
for PP-GUE(S)dS interpolating Poisson and GUE@17,19,20#.
For example, the Brody distribution@14# aSb exp
3$2bSb11%, a, and b given easily in terms of the Brody
parameterb, is a simple interpolation of Poisson and GO
NNSD’s but fits data embarrassingly well. The one (r) pa-
rameter Berry-Robnik~BR! formulas@15,19# for Poisson to
GOE and GUE are applicable when there is only one do
nant chaotic region coexisting with regular regions of a d
namical system;r is the fractional volume, in phase spac
of the chaotic region and 12r is the fractional volume of all
regular regions put together. Similarly, Hasegawaet al. @16#
derived their formula for Poisson to GOE by applying a s
chastic differential equation approach to the level mot
theory, the Izrailev@17# distributions for Poisson to GOE an
GUE are based on a generalization of the circular ensem
joint probability distribution for the eigenvalues, etc. How
ever, a simple yet useful approach for deriving the NNSD
is to extend, as pointed out in@21–24#, Wigner’s 232 ma-
trix formalism. Using an appropriate 232 random matrix
ensemble, transition curves are constructed, for the varia
of the NNSD for Poisson to GOE and GUE, in terms of
transition parameterL (L is mean squared admixing GO
or GUE matrix element divided byb times the square of the
mean spacingD0 of the Poisson spectrum,b51 for GOE,
and b52 for GUE! and these results are reported in th
Brief Report. Relationship of the present work to previo
studies using 232 matrices is pointed out.

Let us consider the following 232 matrix @24#:

Fa~X11X2!1pvl aX31 ia8X4

aX32 ia8X4 a~X12X2!2pvl
G . ~1!

In ~1!, X1 , X2 , X3, and X4 are zero-centered independe
Gaussian variables with variancev2 denoted byG(0,v2) and
the usefulness ofp andl will later become clear. The matrix
~1! for l50,a850 is GOE, l50,a85a is GUE, andXi
50 and l a Poisson gives a Poisson spectrum. Thus~1!
interpolates Poisson, GOE, and GUE. The nearest neigh
spacing distribution for~1! is given by

h-
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P~S:l!dS5
SdS

4v3a2a8A2p
expS 2

p2l2

2a2
2

S2

8v2a2D
3E

0

S

dzI0S pl

2va2
AS22z2D

3expF ~a8!22a2

8v2a2~a8!2
z2G . ~2!

In Eq. ~2! I 0 is Bessel function. Equation~2! gives back the
GOE-GUE interpolation result derived in@21# ~see also@25#!
and it is a generalization of Eq.~16! of @21#. Assuming a
distribution f (l)dl for l, Eq. ~2! defines, for example, the
Poisson to GOE and GUE interpolations. Combining Eq.~2!
with

P~S!dS5F E
2`

1`

P~S:l! f ~l!dlGdS,

for Poisson,

f ~l!dl5e2ldl for 0<l<` and 0 for l,0
~3!

give the spacing distributions for Poisson to GOE and GU
In fact, with a850, p5A1/2, andv5A1/2, Eqs.~2! and~3!
give back the Poisson to GOE interpolation formula of@22#.

In terms of the transition parameterL,

L5
a2v2

D0
2

, ~4!

where the mean spacingD0 of the unperturbed Poisson spe
trum isD052pv and the mean square admixing GOE mat
element isa2v2, the NNSD is

PP-GOE~Ŝ!dŜ5dŜ
Ŝ

4L
exp$2Ŝ2/8L%

3E
0

`

expH 2l2
l2

8LJ I 0S lŜ

4L
D dl;

Ŝ5S/D0 . ~5!

For L50, Eq. ~5! gives the Poisson and forL→` the
Wigner ~GOE! form. Equation~5! is also derived by Haake
et al. @22#. It is easily proved that asL→0 andŜ small, Eq.
~5! reduces to

PP-GOE~Ŝ!dŜ5dŜAp

8

Ŝ

L1/2
expH 2

Ŝ2

16L
J I 0S Ŝ2

16L
D . ~6!

The formula~6! is derived using a special 232 matrix by
Caurier et al. @23#, while Tomsovic@26# and Leyvraz and
Seligman@27# derived the same using perturbation theory
a generalN3N matrix. One important result that follow
from Eq. ~6! is thatP(S) goes to zero asS goes to zero for
.

r

nonzero values ofL ~i.e., there is level repulsion as soon
GOE is switched on!. More significantly, the variance of th
NNSD,

s2~0:L!5~S2̄/S̄2!21, ~7!

for the Poisson to GOE transition, which defines a transit
curve, is given by

sP-GOE
2 ~0:L!5

8L12

p@C~21/2,0,2L!#2
21. ~8!

In Eq. ~8!, C is Kummer’s function@28#. The complete tran-
sition curves2(0:L) vs L is given in Fig. 1. It is instructive
to consider the smallL expansion,

sP-GOE
2 ~0:L! ——→

L!1
114L@ ln~L!111g2 ln 2#, ~9!

whereg is Euler’s constant. Note that theL ln L term also
appears in the smallL expansion of the number varianc
S2(1) @8#,

SP-GOE
2 ~1:L! ——→

L!1
112L@ ln~L!112g2 ln 2#. ~10!

It is important to mention thats2(0) andS2(1) in ~9! and
~10! are not simply related as Poisson is involved; see@2#.
Finally, the accuracy of~9! is well tested in Fig. 2.

FIG. 1. Transition curvess2(0:L) vs L for Poisson to GOE
and Poisson to GUE as given by Eqs.~8! and ~12!, respectively.
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Let us now consider the Poisson to GUE transition. T
NNSD for Poisson to GUE is given by@with a5a8 in ~1!
and combining Eqs.~2! and ~3!#,

PP-GUE~Ŝ!dŜ5dŜ
Ŝ

A2pL1/2
exp$2Ŝ2/8L%

3E
0

`

l21expH 2l2
l2

8LJ sinhS lŜ

4L
D dl.

~11!

It should be noted that the mean squared GUE admix
matrix element is 2a2v2 and hence in this case the transitio
parameterL given by Eq.~4! is the mean squared admixin
GUE matrix element divided by two times the square of
mean spacing of the Poisson spectrum. With the NNSD~11!,
the exact expression fors2(0:L) is

sP-GUE
2 ~0:L!5

12L12

@X~L!#2
21, ~12!

FIG. 2. Transition curvess2(0:L) vs L for Poisson to GOE
and Poisson to GUE for smallL. Exact results~8! and ~12! are
compared with the perturbation theory results~dashed curves! given
by Eqs.~9! and ~13!, respectively.
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X~L!52LF2Ei~2L!14A2L/p 2F2S 1/2,1

3/2,3/2
;2L D G

1A8L/p1e2L@12F~A2L!#.

In Eq. ~12!, Ei is an exponential integral andF is an error
function@28#. Similarly, 2F2 is a generalized hypergeometr
function. The complete Poisson to GUE transition curve
s2(0:L) versusL is given in Fig. 1. Once again it is in
structive to consider the smallL expansion,

sP-GUE
2 ~0:L! ——→

L!1
118L@ ln~L!1 1

2 1g1 ln 2#. ~13!

Just as in the case of Poisson to GOE, here also there is
L ln L term. The accuracy of Eq.~13! is tested in Fig. 2; the
approximation~13! is good forL&0.05.

The transition curves given in Fig. 1 show that the Po
son to GOE and Poisson to GUE transitions are nearly c
plete forL;0.3. The results in Eqs.~8! and~12! are in fact
applicable to generalN3N matrices~or for any interacting
many-particle system! through the transition parameterL by
giving appropriate interpretations toa2v2 andD0 in Eq. ~4!;
this is indeed verified by the results in Fig. 4 of the seco
paper in Ref.@22#. With this, the results in Eqs.~8! and~12!
can be applied to realistic systems. For example, usin
sufficient number of energy levels near ground states or n
the yrast line at high spins as the case may be in ato
nuclei ~similarly in other interacting many-particle system
such as atoms, molecules, etc.!, it is possible to deduce the
correspondings2(0) values. Then from Fig. 1 one can rea
off the value ofL ~or, depending on the sample size erro
determine a bound onL) for Poisson to GOE transitions in
these systems, and similarly, the value ofL for Poisson to
GUE transitions in systems without an antiunitary symme
~see@19# for examples of such systems!. It is expected that in
some limit the transition parameterL should be related to
the BR parameterr (r representing the fractional volume
in phase space, of the chaotic region of a complex dynam
system!. Using Fig. 1 and the BR formula forsP-GOE

2 (0:r)
@Eq. ~30! of @15##, it is seen thatL.r/20(12r) for L
*0.05. However, forL&0.01, results of Eq.~8! and the
corresponding BR formula differ significantly. Finally, ex
periments with superconducting microwave billiards simi
to those reported in@29# should be able to test the transitio
curves given in Figs. 1 and 2 just as in@13#, where the
2-GOE’s to 1-GOE transition is tested.
s.
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