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Using an appropriate 22 random matrix ensemble, transition curves for the variance of the nearest
neighbor spacing distribution are constructed for the Poisson to Gaussian orthogonal and unitary ensemble
transitions in terms of an easily identifiable transition paramé8t063-651%99)10209-3
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The classical [Gaussian orthogonal(GOE), unitary  order to chaos transitions. There are several different formu-
(GUE), and sympletidGSE)] random matrix ensembles are las, given by Brody14], Berry and RobniK15], Hasegawa
classified by Dyson, and Wigner's surmise gives the nearesit al.[16], Izrailev[17], Abul-Magd[18], etc., for the NNSD
neighbor spacing distributiotNNSD) P(S)dS for these en- Pp.codS)dS interpolating Poisson and GOE and similarly
sembles with GOE exhibiting linear and GUE quadratic levely, Pp.cud S)dS interpolating Poisson and GUE7,19,2Q.
repulsion. In addition, these ensembles exhibit spectral rigidrgr example, the Brody distribution[14] aSPexp
ity as given by the Dyson-Mehta ; spectral statistigsee x{—bSP*1, a, andb given easily in terms of the Brody
[1,2] and references therginThe other extreme to the GOE, narameters, is a simple interpolation of Poisson and GOE
GUE, and GSE spectra are the picket fefmeuniform and  NNSD's but fits data embarrassingly well. The ong pa-
the Poisson spectra. The seminal paper by Bohegas. in  rameter Berry-RobnikBR) formulas[15,19 for Poisson to
1984[3] on the analysis of level fluctuations of the quantumoE and GUE are applicable when there is only one domi-
Sinai billiard, whose classical counterpart is known to benant chaotic region coexisting with regular regions of a dy-
completely chaotic, has established that the fluctuation propsgmical systemp is the fractional volume, in phase space,
erties of classical random matrix ensembles are generic ang ine chaotic region and-4p is the fractional volume of all
therefore applicable for local spectral statistics of all quanta}egmar regions put together. Similarly, Hasegawal. [16]
systemg(earliest numerical study of this type is due to Mc- yerjyed their formula for Poisson to GOE by applying a sto-
Donald and Kaufmafé)). In fact, as Berry state$], “If the  cpaqtic differential equation approach to the level motion

system is classically integrable; corresponds to that of heory the Izrailey17] distributions for Poisson to GOE and
Poisson systems, if the system is classically chaotic and ha§ye are based on a generalization of the circular ensemble
no symmetryA; corresponds to that of GUE and if the sys- j5int probability distribution for the eigenvalues, etc. How-
tem is chaotic and has time reversal symmelry corre-  ‘ayer, g simple yet useful approach for deriving the NNSD’s
sponds to that of GOE.” With these, the subject of quantumg iy extend. as pointed out [21—24, Wigner's 2x 2 ma-
chaos is developed; see the revid®s]. trix formalism. Using an appropriate>22 random matrix

The changes in the nature of level fluctuations as a SyMansemble, transition curves are constructed, for the variance
metry is gradually broken, as two good symmetry subspaceg; the NNSD for Poisson to GOE and GUE, in terms of a

are gradually admixed, as orderentegrablg spectra gradu-  yansition parameteA (A is mean squared admixing GOE

ally become chaotic, etc., are studied by using interpolating,. <y matrix element divided bg times the square of the
and/or partitioned random matrix ensembf&s-11]. In all - spacin@, of the Poisson spectrung=1 for GOE

these situations, one can identify that the transition parametu%{ndlgz2 for GUE) and these results are reported in this
(A) and the measures for level fluctuations such as the vargyjef Report. Relationship of the present work to previous
ance of NNSD{o*(0) in the notation of2]], number vari- ¢ Giae using % 2 matrices is pointed o,

anceX?(r), A; statistic, etc., versud give the transition Let us consider the following 22 matrix [24]:
curves. The transition curves for many different types of ran-

dom matrix interpolations are considered in the literature;
see[8-11]. For example, the GOE-GUE transition curve
given in[8] is used to derive an upper bound on the amount )
of time-reversal noninvariant part of nucleon-nucleon inter- aXz—ia'Xy a(X;=Xz)—pvA
action[12]. More recently, the transition curve for<2 par-
titioned GOE given in[8,9] is tested by experiments with
superconducting microwave billiard43]. In (1), Xy, X,, X3, and X, are zero-centered independent
Poisson to GOE and GUE transitions received the attenGaussian variables with varianeé denoted byG(0v?) and
tion of a large number of research groups as they represethe usefulness gf and\ will later become clear. The matrix
(1) for \=0,a’'=0 is GOE,A=0,a’'=«a is GUE, andX;
=0 and A a Poisson gives a Poisson spectrum. Tkls
*Present address: Department of Physics, Indian Institute of Techinterpolates Poisson, GOE, and GUE. The nearest neighbor
nology, New Delhi 110 016, India. spacing distribution fof1) is given by

a(X1+X2)+pV)\ aX3+|aIX4 (1)
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In Eq. (2) | is Bessel function. Equatiof?) gives back the
GOE-GUE interpolation result derived [j21] (see als¢25])
and it is a generalization of Eq16) of [21]. Assuming a
distribution f(A)d\ for N, Eq. (2) defines, for example, the
Poisson to GOE and GUE interpolations. Combining &.
with

G %0)

P(S)dS= JHP(S:)\)f()\)d)\}dS,

—o0

FIG. 1. Transition curvesr?(0:A) vs A for Poisson to GOE

for Poisson, . . :
and Poisson to GUE as given by E¢8) and(12), respectively.

f(\)dA=e *d\ for 0OsA<o and 0 for A<O
(3)  nonzero values oA (i.e., there is level repulsion as soon as

GOE is switched on More significantly, the variance of the
give the spacing distributions for Poisson to GOE and GUENNSD,
In fact, witha’ =0, p=/1/2, andv = \1/2, Eqs.(2) and(3)
give back the Poisson to GOE interpolation formuld 2i].
In terms of the transition parametar, o2(0:A)= (5—2/52)— 1 @

2,2
a~Vv
A= D2’ @ for the Poisson to GOE transition, which defines a transition
curve, is given by

where the mean spacirigy, of the unperturbed Poisson spec-
trum isDy=2pv and the mean square admixing GOE matrix
element isa®v?, the NNSD is 8A+2

2 0:A)= -t
0p.god 0:A) [ W(—1/2,0,20)]?

(8)
Pp.cod S)dS=dS; —exp{~ S?I8A}
5 . In Eq. (8), ¥ is Kummer’s functior{28]. The complete tran-
» fxex N A | <)\_5 "~ sition curves?(0:A) vs A is given in Fig. 1. It is instructive

0 8A[ % 4A ’ to consider the smalk expansion,

S=S5/Dy. (5) A<l
02 o 0:A) ——— 1+4A[IN(A)+1+y=1In2], (9
For A=0, Eq. (5) gives the Poisson and fok— the
Wigner (GOE) form. Equation(5) is also derived by Haake
et al.[22]. It is easily proved that a4 —0 andS small, Eq. wherevy is Euler's constant. Note that theIn A term also
(5) reduces to appears in the smalh expansion of the number variance
32(1) [8],

P cod 918503\ T—ex] — 1o 1o 1o
P-GOF_( ) — gAl/ZCX - 16A 0 16A . ( ) o
32 sod 1:A) ——— 1+2A[IN(A)+1—y—In2]. (10

The formula(6) is derived using a special>22 matrix by

Caurier et al. [23], while Tomsovic[26] and Leyvraz and

Seligman27] derived the same using perturbation theory forlt is important to mention that?(0) and>2(1) in (9) and
a generalNXN matrix. One important result that follows (10) are not simply related as Poisson is involved; &g
from Eq. (6) is thatP(S) goes to zero aS goes to zero for Finally, the accuracy of9) is well tested in Fig. 2.
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YR Potseon —~ GOE A)=2A| —Ei(2A)+42A7 vzl
h cson — 1 X(A)=2A| —Ei(2A)+4 F ;
08 | - Poisson —> GOE ] (A) i(2A) ™ 2F2| 375 313
& 06 N . +BA/m+ e [1-d(\2A)].
[ T ]
0.4 T In Eq. (12), Ei is an exponential integral anfl is an error
0.2 i““"G“(')'E“““““““““““““_ function[28]. Similarly, ,F, is a generalized hypergeometric
) function. The complete Poisson to GUE transition curve for
——t— a?(0:A) versusA is given in Fig. 1. Once again it is in-
08 | Poisson —> GUE ] structive to consider the small expansion,
L 4 A<1
~ 06 [ NG | 02 gud 0:A) —— 1+8A[IN(A)+ 3+ y+In2]. (13
S L TN =]
dt; 04 | 4 Just as in the case of Poisson to GOE, here also there is the
- A In A term. The accuracy of E@l3) is tested in Fig. 2; the
0.2 i G UE--------------------------: approximation(13) is good forA <0.05.
0.0 e The transition curves given in Fig. 1 show that the Pois-
"0.00 0.02 004 006 0.08 0.10 son to GOE and Poisson to GUE transitions are nearly com-
A plete forA~0.3. The results in Eq$8) and(12) are in fact

applicable to generd X N matrices(or for any interacting
FIG. 2. Transition curves?(0:A) vs A for Poisson to GOE many-particle systejrthrough the transition parametarby
and Poisson to GUE for small. Exact results8) and (12) are  giving appropriate interpretations tev? andDy, in Eq. (4);
compared with the perturbation theory resiittashed curvesgjiven  this is indeed verified by the results in Fig. 4 of the second
by Egs.(9) and(13), respectively. paper in Ref[22]. With this, the results in Eq$8) and(12)
can be applied to realistic systems. For example, using a
Let us now consider the Poisson to GUE transition. Thesufficient number of energy levels near ground states or near
NNSD for Poisson to GUE is given biwith a=a’ in (1)  the yrast line at high spins as the case may be in atomic
and combining Egs(2) and (3)], nuclei (similarly in other interacting many-particle systems
8 such as atoms,zmolecules, ¢tdt is possible to deduce the
8 d5=dS 22 correspondingr<(0) values. Then from Fig. 1 one can read
Pe.cue S)dS=d \/EAmexp{—S 1BA} off the value ofA (or, depending on the sample size errors,
determine a bound on) for Poisson to GOE transitions in
o A2 \S these systems, and similarly, the value/offor Poisson to
X f N_leXP{ —A-— 8_A] Si”*(m) dX. GUE transitions in systems without an antiunitary symmetry
(seg[19] for examples of such systejnét is expected that in
(11 some limit the transition parametér should be related to
the BR parametep (p representing the fractional volume,

It Sh.OUI(lj be ”‘?tegztr;at tgi mean sgpared Gr:JE admixing, phase space, of the chaotic region of a complex dynamical
matrix element is 2°v“ and hence in this case the transition system. Using Fig. 1 and the BR formula far2 o 0:p)

parameterA given by Eq.(4) is the mean squared admixing o _ o
GUE matrix element divided by two times the square of theLEg'Og’oLg\tvg\llg]r]' flctrzlf<sc)e %'1 t?:stﬁltsp é?oéé (83) )a;%r t/r:e
mean spacing of the Poisson spectrum. With the NNED, corresponding BR formula differ significantly. Finally, ex-

. 2 . .
the exact expression far(0:A) is periments with superconducting microwave billiards similar
19A 42 to those reported if29] should be able to test the transition
, (12)  curves given in Figs. 1 and 2 just as i3], where the

2
Op. O:A)=—+—-1
P-oul [X(A)]? 2-GOE’s to 1-GOE transition is tested.
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